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Abstract. We reconsider the problem of the sum and difference of two angle variables in quantum me-
chanics. The spectra of the sum and difference operators have widths of 4π, but angles differing by 2π are
indistinguishable. This means that the angle sum and difference probability distributions must be cast into
a 2π range. We obtain probability distributions for the angle sum and difference and relate this problem
to the representation of nonbijective canonical transformations.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov Bohm
effect, Bell inequalities, Berry’s phase) – 42.50.Dv Nonclassical field states; squeezed, antibunched, and
sub-Poissonian states; operational definitions of the phase of the field; phase measurements

1 Introduction

The proper definition of phase variables in quantum me-
chanics is beset by well-known difficulties (for reviews see
Refs. [1–9]). For the simple case of a harmonic oscillator
the problems essentially arise from two basic sources [10]:
the periodicity and the semiboundedness of the energy
spectrum. The first prevents the existence of a phase op-
erator, but not of its exponential. The second entails that
this exponential is not unitary [11–13].

In this paper, we shall rather focus on the similar prob-
lem of the description of the angular position of a plane
rotator (henceforth referred to as an angle operator); i.e. a
body in circular motion. Although we have the same kind
of problems linked with the periodicity, for the plane rota-
tor the angular momentum has a spectrum that includes
both positive and negative integers. This allows to intro-
duce a well behaved exponential of the angle operator [1].

We are primarily interested in the question of angle
sum and difference, which is very similar to the equiva-
lent problem for the phase [14–19]. It seems natural to
define angle-sum and difference operators to be the sum
and difference of the respective angle operators. However,
due to its periodic character, adding and subtracting an-
gles must be done carefully. Since each individual angle is
expressed in a 2π range, the eigenvalue spectra of the sum
and difference operators have widths of 4π, and this is not
compatible with the idea that an angle variable must be
2π periodic. Thus, there should be a way to cast the an-
gle sum and difference into the 2π range [20]. It is worth
emphasizing that, although the probability distributions
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obtained using the ranges 4π and 2π are both valid, they
give different values for the variances.

Our aim in this paper is to deduce a simple and ade-
quate casting procedure for the problem at hand. We shall
see that the transformation to the angle sum and differ-
ence is in fact nonbijective. After working out the conse-
quences of this nonbijectivity, we reexamine the problem
from the point of view of the canonical transformations,
showing how the concept of ambiguity spin, introduced by
Moshinsky and coworkers [21], fits in this context.

2 Classical rotation angles and simple
quantization

We begin our discussion by reconsidering the problem of
angular momentum in three dimensions. For simplicity,
we restrict ourselves to a bead constrained to move on
a circular wire whose axis is aligned in the Z direction.
The classical azimuthal rotation angle of the bead can be
defined in the window [−π, π), for instance, as [22]

φ(x, y) = 2 arctan

(√
x2 + y2

y
−
x

y

)
y 6= 0, (2.1)

and for y = 0, φ is 0 or π according to x > 0 or
x < 0, respectively. This exact definition, yet elementary,
avoids the ambiguity associated with the π periodicity
of the tangent function in the more standard definition
φ(x, y) = arctan(y/x).

The angle is defined as the inverse of a trigonometric
function and may be defined to lie within a chosen 2π
range or to be assigned an initial value and then evolve as



196 The European Physical Journal D

a continuous and unbounded variable [23]. If we treat φ
as a continuous variable, then the Poisson bracket for the
angle and the angular momentum has the form

{φ,Lz} = 1. (2.2)

Direct application of the correspondence between Poisson
brackets and commutators, suggests the commutation re-
lation (in units ~ = 1)

[φ,Lz] = i. (2.3)

In the φ-representation, Lz can be represented by the dif-
ferential operator

Lz = −i
∂

∂φ
, (2.4)

that verifies the fundamental relation (2.3). However, the
use of this operator may entail many pitfalls for the un-
wary.

First, Lz given by (2.4) is selfadjoint only in the space
of 2π-periodic functions. But φ itself is not periodic, and
therefore if Ψ(φ) is a periodic wave function, then φΨ(φ)
is not periodic and is outside the angular momentum state
space [23].

There is a further difficulty associated with a naive
trust in the hermiticity of Lz. This problem was origi-
nally discovered in connection with the Dirac proposal of
a phase operator [24]. Taking the matrix elements of (2.3)
in the angular momentum basis we have

〈m|[φ,Lz]|m
′〉 = iδmm′ , (2.5)

or, supposing that Lz can operate to the left as it were
selfadjoint

(m′ −m)〈m|φ|m′〉 = iδmm′ . (2.6)

The diagonal elements in this equation clearly demon-
strates the problem.

A possible solution, proposed by Judge and Lewis [25],
is to modify the angle operator so that it corresponds to
multiplication by φ plus a series of step functions that
sharply change the angle by 2π at appropriate points. The
result is that the commutation relation between φ and Lz
has a δ-function term in addition to the i term in (2.3).
This corresponds to the classical Poisson bracket of Lz
and a single-valued angle variable [23].

It is possible to follow a different method which seems
simpler and gives the same results. The idea is to use
a continuous periodic complex variable to locate the az-
imuthal position [26]. This was pointed out by Louisell [27]
in the context of the phase problem. Thus we use the com-
plex exponential of the angle, we shall denote by E, and
impose the commutation relation

[E,Lz] = E. (2.7)

The action of the unitary operator E on the angular-
momentum basis is

E|m〉 = |m− 1〉, (2.8)

where the integer m runs from −∞ to +∞. The eigenvec-
tors of E are

|φ〉 =
1
√

2π

+∞∑
m=−∞

eimφ|m〉, (2.9)

with E|φ〉 = eiφ|φ〉, and allow for a resolution of the iden-
tity of the form

I =

∫ φ0+2π

φ0

dφ |φ〉〈φ| (2.10)

where φ0 is a fiducial or reference angle [23]. This family
of projectors, and the associated probability distribution
P (φ) = 〈φ|ρ|φ〉, where ρ is the density operator for the
system, represents an ideal, sharp or noiseless description
of the angle.

The resolution of the identity (2.10) allows us to intro-
duce an angle operator

Φφ0 =

∫ φ0+2π

φ0

dφ φ|φ〉〈φ|. (2.11)

The properties and proper use of this operator have been
studied extensively by Barnett and Pegg. The interesting
approach developed in reference [23] involves the use of a
state space of finite but arbitrarily large dimension where
the angle eigenstates can be properly normalized. Physical
results are obtained in the limit as the dimension tends to
infinity after expectation values are calculated.

Although the vectors |φ〉 provide an adequate descrip-
tion of the quantum angle, it should be taken into account
that realistic measurements are always imprecise. In par-
ticular, the measurement of P (φ) would require infinite
energy. In other words, the mathematical continuum of
angles will be observed always with finite resolution [28].

Therefore, it could be interesting to extend the quan-
tum angle formalism by including fuzzy, unsharp or noisy
generalizations of the ideal description provided by E or
|φ〉〈φ|. To this end we shall use positive-operator measures
(POMs) [29,30], that are a set of linear operators ∆(φ)
furnishing the correct probabilities in any measurement
process through the fundamental postulate that

P (φ) = Tr [ρ∆(φ)] . (2.12)

Compatibility with the properties of ordinary probability
imposes the requirements

∆†(φ) = ∆(φ), ∆(φ) ≥ 0,

∫ φ0+2π

φ0

dφ∆(φ) = I.

(2.13)

One important point is, however, that the operators ∆(φ)
might be nonorthogonal projections and mixed states.

In addition to these basic statistical conditions, some
other requirements must be imposed to ensure that ∆(φ)
provides a meaningful description of the angle as a canoni-
cally conjugate variable with respect Lz (even in the sense
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of a weak Weyl relation). To this end, we adopt the same
axiomatic approach developed previously by Leonhard,
Vaccaro, Böhmer and Paul [31] for the optical phase. First,
we require the shifting property [32]

eiφ
′Lz ∆(φ) e−iφ

′Lz = ∆(φ+ φ′), (2.14)

which leads to

∆(φ) =
1

2π

∞∑
m,m′=−∞

gm,m′ e
i(m−m′)φ|m〉〈m′|. (2.15)

We must take also into account that a shift in Lz should
not change the angle distribution. A shift in Lz is ex-
pressed by the operator E since, according to (2.8), it
shifts the angular momentum distribution by one step.
Therefore, we require as well

E ∆(φ) E† = ∆(φ), (2.16)

which imposes the additional constraint gm+1,m′+1 =
gm,m′ . This means that

gm,m′ = gm−m′ . (2.17)

In consequence, (2.15) can be recast as

∆(φ) =
1

2π

∞∑
k=−∞

g−k e
−ikφEk, (2.18)

and the conditions (2.13) are now

|gk| ≤ 1, g∗k = g−k. (2.19)

Expressing the operator E in terms of its eigenvectors
(2.9), we finally arrive at the more general form of the
POM describing the angle variable and fulfilling the nat-
ural requirements (2.14) and (2.16):

∆(φ) =

∫ φ0+2π

φ0

dφ′ G(φ′) |φ+ φ′〉〈φ+ φ′|, (2.20)

where

G(φ) =
1

2π

∞∑
k=−∞

gk e
−ikφ. (2.21)

The convolution in (2.20) shows that this POM effectively
represents a noisy version of the usual projection measure
|φ〉〈φ|. The function G(φ) gives the resolution provided by
this POM.

3 Probability distributions for the angle sum
and difference

When we have two of such plane rotators, labeled 1 and 2,
the exponentials of the angle sum E+ and angle difference
E− are the unitary operators

E+ = E1E2 , E− = E1E
†
2. (3.1)

We introduce as well the angular momentum sum and
difference by

L+ =
L1z + L2z

2
, L− =

L1z − L2z

2
· (3.2)

These operators satisfy the commutation relations

[E−, L+] = 0, [E+, L+] = E+,

(3.3)

[E−, L−] = E−, [E+, L−] = 0;

so they are in fact canonically conjugate variables. The
eigenvectors of E+ and E− are of the form |φ1, φ2〉 with
eigenvalues eiφ+ = ei(φ1+φ2) and eiφ− = ei(φ1−φ2), respec-
tively.

Note that while (E1, E2), (L1z, L2z) or (L+, L−) are
complete sets of commuting operators, this is not true for
(E+, E−), since the vectors |φ1, φ2〉 and |φ1 + π, φ2 + π〉
have the same angle sum and difference. Therefore another
commuting operator must be considered to describe the
system. We can use the operator

V = eiπ(L1z+L2z), (3.4)

which commutes with E+ and E−

[E+, V ] = [E−, V ] = 0. (3.5)

In consequence, (E+, E−, V ) is a complete set of commut-
ing operators, whose associated basis is

|φ+, φ−, p〉 =
e−ipφ1

2
[|φ1, φ2〉+ (−1)p|φ1 + π, φ2 + π〉] ,

(3.6)

with p = 0, 1, and

φ1 =
φ+ + φ−

2
, φ2 =

φ+ − φ−
2

· (3.7)

The complex exponential in the definition (3.6) is intro-
duced for convenience in order to get the same expression
|φ+, φ−, p〉 when φ1 and φ2 are replaced by φ1 + π and
φ2 + π. Then, the action of V on this basis is

V |φ+, φ−, p〉 = (−1)p|φ+, φ−, p〉, (3.8)

and we have the resolution of the identity

I =
∑
p

∫ φ0++2π

φ0+

∫ φ0−+2π

φ0−

dφ+dφ− |φ+, φ−, p〉〈φ+, φ−, p| ,

(3.9)

where φ0+ and φ0− are the corresponding fiducial angles
for these variables.

The joint-probability distribution function P cast into
a 2π range for the angle sum and difference associated
with a system state ρ is

P(φ+, φ−) =
∑
p=0,1

〈φ+, φ−, p|ρ|φ+, φ−, p〉, (3.10)
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which is the sum of the contributions from each value of p.
Taking into account (3.6) and (3.7), we can express

P(φ+, φ−) in terms of the probability distribution for the
individual angles P (φ1, φ2) = 〈φ1, φ2|ρ|φ1, φ2〉 in the form

P(φ+, φ−) =
1

2

[
P

(
φ+ + φ−

2
,
φ+ − φ−

2

)
+ P

(
φ+ + φ−

2
+ π,

φ+ − φ−
2

+ π

)]
.

(3.11)

An equivalent way to obtain this law is to compute the
characteristics [33] eikφ+ eilφ− , with k and l integers:

〈
eikφ+ eilφ−

〉
=

∫ φ01+2π

φ01

∫ φ02+2π

φ02

dφ1dφ2

× eik(φ1+φ2)eil(φ1−φ2) P (φ1, φ2). (3.12)

We must get the same mean values for any periodic func-
tion of the angle sum and difference whether we use the
variables (φ+, φ−) or (φ1, φ2), and then∫ φ0++2π

φ0+

∫ φ0−+2π

φ0−

dφ+dφ− e
ikφ+eilφ−P(φ+, φ−)

=

∫ φ01+2π

φ01

∫ φ02+2π

φ02

dφ1dφ2 e
ik(φ1+φ2)eil(φ1−φ2)P (φ1, φ2).

(3.13)

Since P(φ+, φ−) and P (φ1, φ2) are 2π-periodic functions,
these equalities determine P(φ+, φ−) completely, as can
be shown using Fourier analysis.

We see that the probability distribution for the an-
gle sum and difference cannot be obtained from the one
associated with the individual angles simply by the cor-
responding transformation of the variables (3.7). This is
because the same sum and difference can be obtained from
two different values for the angles of each system and then
the transformation becomes nonbijective. The true trans-
formation is obtained only after adding these two contri-
butions.

We can generalize now the transformation law (3.11)
to any POM. The joint-probability distribution function
P (φ1, φ2) will arise from ∆(φ1, φ2) defined by

∆(φ1, φ2) = ∆1(φ1)⊗∆2(φ2). (3.14)

The use of (3.12) leads to the following POM for the phase
sum and difference cast into a 2π range

Λ(φ+, φ−) =
1

2

[
∆

(
φ+ + φ−

2
,
φ+ − φ−

2

)
+ ∆

(
φ+ + φ−

2
+ π,

φ+ − φ−
2

+ π

)]
.

(3.15)

When ∆1 and ∆2 are of the form (2.18) we have

Λ(φ+, φ−) =
1

(2π)2

∞∑
k,l=−∞

g
(1)
−k−l g

(2)
−k+l

× e−ikφ+e−ilφ− Ek+E
l
−

=
∑
p

∫ φ0++2π

φ0+

∫ φ0−+2π

φ0−

dφ′+dφ
′
− G(φ′+, φ

′
−)

× |φ+ + φ′+, φ− + φ′−, p〉〈φ+ + φ′+, φ− + φ′−, p|,

(3.16)

with

G(φ+, φ−) =
1

(2π)2

∞∑
k,l=−∞

g
(1)
−k−l g

(2)
−k+l e

ikφ+eilφ− ,

(3.17)

and the relation between G(φ+, φ−) and G1(φ1)G2(φ2) is
given by (3.11).

As it could be expected, Λ(φ+, φ−) is a fuzzy general-
ization in the form of a convolution of the ideal description
of angle sum and difference in (3.10). This POM satisfies
the natural requirements (2.14) and (2.16) with respect to
L+ and L−. Moreover, it does not contain any information
about the variable p.

Finally, we focus on the angle difference. The associ-
ated POM Λ(φ−) is defined by

Λ(φ−) =

∫ φ0++2π

φ0+

dφ+ Λ(φ+, φ−). (3.18)

By using (3.16), we get

Λ(φ−) =
1

2π

∞∑
k=−∞

g
(1)
−k g

(2)
k e−ikφ− Ek−. (3.19)

This is equivalent to

Λ(φ−) =

∫ φ02+2π

φ02

dφ′∆1(φ− + φ′)∆2(φ′). (3.20)

This last equation allows us to provide an alternative ap-
proach to the fuzzy descriptions of angle discussed in Sec-
tion 2. If we consider that the density operator factorizes,
ρ = ρ1 ⊗ ρ2, the angle difference can be regarded as a
measure of the angle φ1 relative to a given reference state
described by ρ2.

If ∆1(φ1) = |φ1〉〈φ1| and ∆2(φ2) = |φ2〉〈φ2|, the angle
description of the system ρ1 that equation (3.20) provides
in this way is

∆(φ) = Tr2 [ρ2 Λ(φ = φ−)]

=

∫ φ02+2π

φ02

dφ′〈φ′|ρ2|φ
′〉|φ+ φ′〉〈φ+ φ′|, (3.21)

and now the function G(φ) is 〈φ|ρ2|φ〉. Thus, any POM
with the properties (2.14) and (2.16) can be viewed as an
ideal measure of the angle relative to an imprecise origin
of angles described by the reference state ρ2.
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4 Canonical transformation to angle sum
and difference

In this section we wish to reconsider the transformation re-
lating the set of coordinates (φ1, φ2, L1z, L2z) of the phase
space of the system to the set (φ+, φ−, L+, L−). This is
a canonical transformation; i.e. it preserves the Poisson
brackets and thereby (φ+, L+) and (φ−, L−) are conju-
gate variables.

It is clear that a similar transformation in position and
momentum for instance will not need any special caution.
Even if the range of variation of the position would be
a finite interval, we could always accommodate properly
the range of variation of the sum and difference variables.
However, in the angle case we are forced to think on φ+

and φ− as 2π-periodic variables. This necessary restriction
makes the transformation nonbijective since, as previously
discussed, the points (φ1, φ2) and (φ1 +π, φ2 +π) map on
the same point (φ+, φ−).

The equivalence between phase-space coordinates re-
lated by a canonical transformation is expressed in quan-
tum mechanics by a unitary transformation [34]. This
means that now we have two Hilbert spaces H+ and H−
associated with angle and angular momentum operators
(Ē+, L̄+) and (Ē−, L̄−) related to the original ones H1

and H2, associated with (E1, L1z) and (E2, L2z), via a
unitary operator U : H1 ⊗H2 →H+ ⊗H−, such that

Ē+ = UE+U
† , Ē− = UE−U

† ,

(4.1)

L̄+ = UL+U
† , L̄− = UL−U

† .

The knowledge of U provides complete information about
the transformation we are studying.

Intimately linked with the nonbijectivity, we find that
the transformation must relate operators with different
spectra [21]. Relations (4.1) seem to impose half-integer
values to L̄+ and L̄− (that is, 4π-periodicity for the cor-
responding angles) contrary to what we have supposed.
Therefore, the transformation (4.1) cannot be unitary.

Nevertheless we can find isometric mappings [35] if we
restrict the definition to certain subspaces of H1 ⊗ H2.
This can be accomplished by using the concept of ambi-
guity group; i.e. the group connecting the set of points
in the original space mapped on the same one in the new
space [21]. Here this group has only two elements: the
identity and a joint π rotation on both angles, that is rep-
resented by the operator V in (3.4). Note that this group
is equivalent to the cyclic group of order 2, and leaves
invariant all the operators in the definition (4.1) of the
transformation.

To find subspaces that could be isometrically mapped
in H+ ⊗H−, verifying (4.1) up to constants, we must re-
strict ourselves to subspaces where the action of the ambi-
guity group becomes a constant phase factor; i.e. the sub-
spaces carrying the unitary representations of the group.
According to (3.8), we have two of these subspaces, we
shall call E0 and E1, spanned by |φ+, φ−, p〉 (p = 0, 1).

Equivalently, the subspace E0 is spanned by the simultane-
ous eigenvectors of L1z and L2z {|2n, 2m〉, |2n+1, 2m+1〉},
while E1 is spanned by {|2n+ 1, 2m〉, |2n, 2m+ 1〉}, with
n and m integers running from −∞ to +∞. Note that
in avoiding the nonbijectivity with these restrictions, we
also remove the problem caused by the difference of the
spectra. The subspace E0 has only eigenvalues of L1z and
L2z whose sum or difference is even, and then the spectra
of the operators involved in (4.1) are equal. On the other
hand, E1 contains only eigenvalues whose sum or difference
is odd, and the spectra can be made equal simply adding
to L̄+ and L̄− in (4.1) a half-integer constant. With this
in mind, it is possible to find two isometric mappings Up
from Ep (p = 0, 1) to H+ ⊗H−. They are given by

Up =

∫ φ0++2π

φ0+

∫ φ0−+2π

φ0−

dφ+dφ− |φ̄+, φ̄−〉〈φ+, φ−, p| ,

(4.2)

where

|φ̄+, φ̄−〉 =
1

2π

∞∑
m,n=−∞

eimφ̄+einφ̄− |m̄, n̄〉 (4.3)

are the common eigenstates of Ē+ and Ē− and |m̄, n̄〉
are the eigenstates of L̄+ and L̄−. We can observe that
UpU

†
p = I while U†pUp is the projector on the subspace Ep.

Moreover,
∑
p U
†
pUp = I.

With these partial isometries we can construct a unit-
preserving completely positive map [36,37] Υ : H+ ⊗
H− →H1 ⊗H2, such that for any operator A

Υ (A) =
∑
p

U†p A Up. (4.4)

In particular, we have

Υ (Ē−) = E1E
†
2, Υ (Ē+) = E1E2. (4.5)

Despite this, we could be interested in a truly unitary
transformation defined over the whole space, in order to
have a complete description of the system in terms of the
angle sum and difference. To do this we need to enlarge
the final space adding a new variable, usually called the
ambiguity spin, whose role is to provide a different im-
age for each subspace Ep and simultaneously equalize the

spectra. The final space will be of the form H+⊗H−⊗V,
where V is a two-dimensional Hilbert space spanned by
the orthonormal basis |0〉 and |1〉.

Considering U : H1 ⊗H2 −→ H+ ⊗H− ⊗ V, we have
that the operator

U = |0〉U0 + |1〉U1, (4.6)

is unitary and performs the transformation

Ē+ = UE+U
† , Ē− = UE−U

† ,

(4.7)

L̄+ +
Π̄

2
= UL+U

† , L̄− +
Π̄

2
= UL−U

† ,
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where Π̄|p〉 = p|p〉.
The unitary operator U contains the transformation

(4.4) as a particular case, since

U† (A⊗ IV)U =
∑
p

U†p A Up, (4.8)

IV being the identity in V.
With this unitary transformation we immediately ob-

tain the probability distribution function associated with
the angle sum and difference. One easily checks that

P(φ+, φ−) = Tr
[
ρU†

(
|φ̄+, φ̄−〉〈φ̄+, φ̄−| ⊗ IV

)
U
]

=
∑
p=0,1

〈φ+, φ−, p|ρ|φ+, φ−, p〉. (4.9)

Thus, once again, we have arrived at (3.10) and to the
same transformation law (3.11) by a different way. The
nonbijectivity, ambiguity group and ambiguity spin trans-
late the fact that the angle sum and difference are not by
themselves a complete set of commuting operators. Then,
the ambiguity spin is the other operator needed to com-
plete this set. Note that eiπΠ̄ = U V U†.

5 Conclusions

What we expect to have accomplished in this paper is
a complete description of the probability distribution for
the angle sum and difference. We have shown that this
probability distribution, when cast to a 2π interval, has a
nontrivial form if expressed in terms of the probabilities
of individual angles. This is due to the fact that the same
sum and difference can be obtained from two different
values of the angles of each system.

This fact makes the transformation from individual
angles to angle sum and difference nonbijective. We have
worked the problem from the point of view of the represen-
tations of nonbijective canonical transformations, adapt-
ing the concept of the ambiguity spin to this context.

We are much indebted to Professor A. Galindo for discussions.
We would like to thank two anonymous referees for their in-
valuable suggestions and for bringing out to our attention ref-
erence [22].
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